Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.310
Filtrar
1.
Eur J Pharmacol ; 970: 176507, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492877

RESUMO

BACKGROUND AND AIMS: Acute kidney injury (AKI) due to renal ischemia-reperfusion injury (RIRI) is associated with high morbidity and mortality, with no renoprotective drug available. Previous research focused on single drug targets, yet this approach has not reached translational success. Given the complexity of this condition, we aimed to identify a disease module and apply a multitarget network pharmacology approach. METHODS: Identification of a disease module with potential drug targets was performed utilizing Disease Module Detection algorithm using NADPH oxidases (NOXs) as seeds. We then assessed the protective effect of a multitarget network pharmacology targeting the identified module in a rat model of RIRI. Rats were divided into five groups; sham, RIRI, and RIRI treated with setanaxib (NOX inhibitor, 10 mg/kg), etanercept (TNF-α inhibitor, 10 mg/kg), and setanaxib and etanercept (5 mg/kg each). Kidney functions, histopathological changes and oxidative stress markers (MDA and reduced GSH) were assessed. Immunohistochemistry of inflammatory (TNF-α, NF-κB) apoptotic (cCasp-3, Bax/Bcl 2), fibrotic (α-SMA) and proteolysis (MMP-9) markers was performed. RESULTS: Our in-silico analysis yielded a disease module with TNF receptor 1 (TNFR1A) as the closest target to both NOX1 and NOX2. Targeting this module by a low-dose combination of setanaxib, and etanercept, resulted in a synergistic effect and ameliorated ischemic AKI in rats. This was evidenced by improved kidney function and reduced expression of inflammatory, apoptotic, proteolytic and fibrotic markers. CONCLUSIONS: Our findings show that applying a multitarget network pharmacology approach allows synergistic renoprotective effect in ischemic AKI and might pave the way towards translational success.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Ratos , Animais , Fator de Necrose Tumoral alfa/farmacologia , Etanercepte/farmacologia , Rim , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle
2.
Medicina (Kaunas) ; 60(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541075

RESUMO

Background and Objectives: Therapeutic hypothermia (TH) shows promise as an approach with neuroprotective effects, capable of reducing secondary brain damage and intracranial pressure following successful mechanical thrombectomy in the acute phase. However, its effect on cognitive impairment remains unclear. This study investigated whether TH can improve cognitive impairment in a mouse model of transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R). Materials and Methods: Nine-week-old C57BL/6N mice (male) were randomly assigned to three groups: sham, tMCAO/R, and tMCAO/R with TH. Cognitive function was assessed 1 month after model induction using the Y-maze test, and regional cerebral glucose metabolism was measured through positron emission tomography with fluorine-18 fluorodeoxyglucose. Results: tMCAO/R induced cognitive impairment, which showed improvement with TH. The TH group exhibited a significant recovery in cerebral glucose metabolism in the thalamus compared to the tMCAO/R group. Conclusions: These findings indicate that TH may hold promise as a therapeutic strategy for alleviating ischemia/reperfusion-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Hipotermia Induzida , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Animais , Masculino , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Disfunção Cognitiva/terapia , Disfunção Cognitiva/complicações , Glucose
3.
Mediators Inflamm ; 2024: 7459054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549714

RESUMO

Background: Cerebral ischemia-reperfusion injury is a common complication of ischemic stroke that affects the prognosis of patients with ischemic stroke. The lipid-soluble diterpene Tanshinone IIA, which was isolated from Salvia miltiorrhiza, has been indicated to reduce cerebral ischemic injury. In this study, we investigated the molecular mechanism of Tanshinone IIA in alleviating reperfusion-induced brain injury. Methods: Middle cerebral artery occlusion animal models were established, and neurological scores, tetrazolium chloride staining, brain volume quantification, wet and dry brain water content measurement, Nissl staining, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were performed. The viability of cells was measured by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assays, while cell damage was measured by lactate dehydrogenase release in the in vitro oxygen glucose deprivation model. In addition, enzyme-linked immunosorbent assay, flow cytometry, western blotting, and reverse transcription-quantitative polymerase chain reaction were used to evaluate the therapeutic effect of Tanshinone IIA on ischemia/reperfusion (I/R) induced brain injury, as well as its effects on the inflammatory response and neuronal apoptosis, in vivo and in vitro. Furthermore, this study validated the targeting relationship between miR-124-5p and FoxO1 using a dual luciferase assay. Finally, we examined the role of Tanshinone IIA in brain injury from a molecular perspective by inhibiting miR-124-5p or increasing FoxO1 levels. Results: After treatment with Tanshinone IIA in middle cerebral artery occlusion-reperfusion (MCAO/R) rats, the volume of cerebral infarction was reduced, the water content of the brain was decreased, the nerve function of the rats was significantly improved, and the cell damage was significantly reduced. In addition, Tanshinone IIA effectively inhibited the I/R-induced inflammatory response and neuronal apoptosis, that is, it inhibited the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, decreased the expression of apoptotic protein Bax and Cleaved-caspase-3, and promoted the expression of antiapoptotic protein Bcl-2. In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, Tanshinone IIA also inhibited the expression of inflammatory factors in neuronal cells and inhibited the occurrence of neuronal apoptosis. In addition, Tanshinone IIA promoted the expression of miR-124-5p. Transfection of miR-124-5p mimic has the same therapeutic effect as Tanshinone IIA and positive therapeutic effect on OGD cells, while transfection of miR-124-5p inhibitor has the opposite effect. The targeting of miR-124-5p negatively regulates FoxO1 expression. Inhibition of miR-124-5p or overexpression of FoxO1 can weaken the inhibitory effect of Tanshinone IIA on brain injury induced by I/R, while inhibition of miR-124-5p and overexpression of FoxO1 can further weaken the effect of Tanshinone IIA. Conclusion: Tanshinone IIA alleviates ischemic-reperfusion brain injury by inhibiting neuroinflammation through the miR-124-5p/FoxO1 axis. This finding provides a theoretical basis for mechanistic research on cerebral ischemia-reperfusion injury.


Assuntos
Abietanos , Lesões Encefálicas Traumáticas , Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Oxigênio/metabolismo , Reperfusão/efeitos adversos , Glucose/metabolismo , Água , Apoptose
4.
Biochem Biophys Res Commun ; 709: 149709, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554603

RESUMO

Ischemia-reperfusion (I/R) leads to tissue damage in transplanted kidneys, resulting in acute kidney injury (AKI) and chronic graft dysfunction, which critically compromises transplant outcomes, such as graft loss. Linaclotide, a guanylate cyclase C agonist clinically approved as a laxative, has recently been identified to exhibit renoprotective effects in a chronic kidney disease (CKD) model. This study evaluates the therapeutic effects of linaclotide on AKI triggered by I/R in a rat model with an initial comparison with other laxatives. Here, we show that linaclotide administration resulted in substantial reduction in serum creatinine levels, reflective of enhanced renal function. Histological examination revealed diminished tubular damage, and Sirius Red staining confirmed less collagen deposition, collectively indicating preserved structural integrity and mitigation of fibrosis. Further analysis demonstrated lowered expression of TGF-ß and associated fibrotic markers, α-SMA, MMP2, and TIMP1, implicating the downregulation of the fibrogenic TGF-ß pathway by linaclotide. Furthermore, one day after I/R insult, linaclotide profoundly diminished macrophage infiltration and suppressed critical pro-inflammatory cytokines such as TNF, IL-1ß, and IL-6, signifying its potential to disrupt initial inflammatory mechanisms integral to AKI pathology. These findings suggest that linaclotide, with its established safety profile, could extend its benefits beyond gastrointestinal issues and potentially serve as a therapeutic intervention for organ transplantation. Additionally, it could provide immediate and practical insights into selecting laxatives for managing patients with AKI or CKD, regardless of the cause, and for those receiving dialysis or transplant therapy.


Assuntos
Injúria Renal Aguda , Peptídeos , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Laxantes/metabolismo , Laxantes/farmacologia , Laxantes/uso terapêutico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Rim/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Insuficiência Renal Crônica/patologia , Isquemia/patologia , Reperfusão , Fator de Crescimento Transformador beta/metabolismo , Fibrose
5.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38529522

RESUMO

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Ratos Wistar , Rim/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Inflamação/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/complicações , Fibrose
6.
JCI Insight ; 9(6)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516890

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (Dapa), exhibited nephroprotective effects in patients with chronic kidney disease (CKD). We assessed the efficacy of short-term Dapa administration following acute kidney injury (AKI) in preventing CKD. Male Wistar rats were randomly assigned to Sham surgery, bilateral ischemia for 30 minutes (abbreviated as IR), and IR + Dapa groups. Daily treatment with Dapa was initiated just 24 hours after IR and maintained for only 10 days. Initially, rats were euthanized at this point to study early renal repair. After severe AKI, Dapa promptly restored creatinine clearance (CrCl) and significantly reduced renal vascular resistance compared with the IR group. Furthermore, Dapa effectively reversed the mitochondrial abnormalities, including increased fission, altered mitophagy, metabolic dysfunction, and proapoptotic signaling. To study this earlier, another set of rats was studied just 5 days after AKI. Despite persistent renal dysfunction, our data reveal a degree of mitochondrial protection. Remarkably, a 10-day treatment with Dapa demonstrated effectiveness in preventing CKD transition in an independent cohort monitored for 5 months after AKI. This was evidenced by improvements in proteinuria, CrCl, glomerulosclerosis, and fibrosis. Our findings underscore the potential of Dapa in preventing maladaptive repair following AKI, emphasizing the crucial role of early intervention in mitigating AKI long-term consequences.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Humanos , Masculino , Ratos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Glucose , Ratos Wistar , Insuficiência Renal Crônica/tratamento farmacológico , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo , Sódio/metabolismo , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico
7.
CNS Neurosci Ther ; 30(2): e14610, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334013

RESUMO

AIMS: Hepatic ischemia-reperfusion injury (HIRI) resulting from hepatic inflow occlusion, which is a common procedure in liver surgery is inevitable. Previous research has confirmed that the cognitive dysfunction induced by HIRI is closely related to dysbiosis of the gut microbiota. This research aims to investigate the mechanisms underlying this complication. METHODS: C57BL/6 mice underwent hepatic ischemia experimentally through the occlusion of the left hepatic artery and portal vein. To assess the HDAC2-ACSS2 axis, gut microbiota transplantation. Enzyme-linked immunosorbent assay and LC/MS short-chain fatty acid detection were utilized. RESULTS: The findings indicated a notable decline in ACSS2 expression in the hippocampus of mice experiencing hepatic ischemia-reperfusion injury, emphasizing the compromised acetate metabolism in this particular area. Furthermore, the cognitive impairment phenotype and the dysregulation of the HDAC2-ACSS2 axis could also be transmitted to germ-free mice via fecal microbial transplantation. Enzyme-linked immunosorbent assay revealed reduced Acetyl-coenzyme A (acetyl-CoA) and Acetylated lysine levels in the hippocampus. CONCLUSION: These findings suggest that acetate metabolism is impaired in the hippocampus of HIRI-induced cognitive impairment mice and related to dysbiosis, leading to compromised histone acetylation.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Animais , Camundongos , Acetatos/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disbiose/complicações , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/metabolismo
8.
Ann Nucl Med ; 38(5): 337-349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360964

RESUMO

BACKGROUND: Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS: We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS: We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION: Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.


Assuntos
Isquemia Encefálica , Ciclosporina , Traumatismo por Reperfusão , Ratos , Animais , Infiltração de Neutrófilos , Edaravone/farmacologia , Edaravone/uso terapêutico , Fluordesoxiglucose F18 , Doenças Neuroinflamatórias , Radioisótopos de Gálio/uso terapêutico , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/complicações , Tomografia por Emissão de Pósitrons , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/complicações
9.
Eur J Pharmacol ; 969: 176460, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402931

RESUMO

Ropinirole used to treat Parkinson's disease highly targets the dopaminergic receptor D3 over the D2 receptor but although both are expressed in the kidneys the ropinirole potential to treat kidney injury provoked by ischemia/reperfusion (I/R) is undraped. We investigated whether ropinirole can alleviate renal I/R by studying its anti-inflammatory, antioxidant, and anti-pyroptotic effects targeting its aptitude to inhibit the High-mobility group box 1/Toll-like receptor 4/Nuclear factor-kappa B (HMGB1/TLR4/NF-κB) cue and the canonical/non-canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome trajectories. Herein, bilateral I/R surgery was induced in animals to be either untreated or treated with ropinirole for three days after the insult. Ropinirole successfully improved the histopathological picture and renal function which was confirmed by reducing cystatin C and the standard parameters creatinine and blood urea nitrogen (BUN). Ropinirole achieved this through its anti-inflammatory capacity mediated by reducing the HMGB1/TLR4 axis and inactivating NF-κB, which are upstream regulators of the NLRP3 pathway. As a result, the injurious inflammasome markers (NLRP3, apoptosis-associated speck-like protein (ASC), active caspase-1) and their target cytokines interleukin-1 beta (IL-1ß) and IL-18 were decreased. Ropinirole also reduced the pyroptotic cell death markers caspase-11 and gasdermin-D. Furthermore, ropinirole by replenishing antioxidants and decreasing malondialdehyde helped to reduce oxidative stress in the kidneys. The docking findings confirmed that ropinirole highly binds to the dopaminergic D3 receptor more than to the D2 receptor. In conclusion, ropinirole has the potential to be a reno-therapeutic treatment against I/R insult by abating the inflammatory NLRP3 inflammasome signal, pyroptosis, and oxidative stress.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Indóis , Traumatismo por Reperfusão , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Caspases , Antioxidantes/farmacologia , Isquemia , Rim/metabolismo , Reperfusão , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
Eur J Pharmacol ; 967: 176391, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325794

RESUMO

The microcirculation hemodynamics change and inflammatory response are the two main pathophysiological mechanisms of renal ischemia-reperfusion injury (IRI) induced acute kidney injury (AKI). The treatment of microcirculation hemodynamics and inflammatory response can effectively alleviate renal injury and correct renal function. Picroside II (P II) has a wide range of pharmacological effects. Still, there are few studies on protecting IRI-AKI, and whether P II can improve renal microcirculation perfusion is still being determined. This study aims to explore the protective effect of P II on IRI-AKI and evaluate its ability to enhance renal microcirculation perfusion. In this study, a bilateral renal IRI-AKI model in mice was established, and the changes in renal microcirculation and inflammatory response were quantitatively evaluated before and after P II intervention by contrast-enhanced ultrasound (CEUS). At the same time, serum and tissue markers were measured to assess the changes in renal function. The results showed that after P II intervention, the levels of serum creatinine (Scr), blood urea nitrogen (BUN), serum cystatin C (Cys-C), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the time-to-peak (TTP), peak intensity (PI) and area under the curve (AUC), and the normalized intensity difference (NID) were all alleviated. In conclusion, P II can improve renal microcirculation perfusion changes caused by IRI-AKI, reduce inflammatory reactions during AKI, and enhance renal antioxidant stress capacity. P II may be a new and promising drug for treating IRI-AKI.


Assuntos
Injúria Renal Aguda , Cinamatos , Glucosídeos Iridoides , Traumatismo por Reperfusão , Camundongos , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Rim/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Reperfusão , Isquemia/patologia
11.
Nephrology (Carlton) ; 29(4): 188-200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173056

RESUMO

AIM: In two recent studies, we observed that a 30-min renal vein clamping caused formation of interstitial haemorrhagic congestion in ischaemic and ischaemic/reperfused kidney along with the development of severer acute kidney injury (AKI) than renal artery or pedicle clamping. It was suggested that the transmission of high arterial pressure into renal microvessels during vein occlusion probably causes the occurrence of interstitial haemorrhagic congestion that augments AKI. The present investigation aimed to evaluate this suggestion by reducing renal perfusion pressure (RPP) during renal venous occlusion. METHODS: Anaesthetized male Sprague-Dawley rats were divided into three groups (n = 8), which underwent a 2-h reperfusion period following 30-min bilateral renal venous clamping along with reduced RPP (VIR-rRPP group) or without reduced RPP (VIR group) and an equivalent period after sham-operation (Sham group). RESULTS: The VIR-rRPP group compared with VIR group had lower levels of kidney malondialdehyde and tissue damages as epithelial injuries of proximal tubule and thick ascending limb, vascular congestion, intratubular cast and oedema, along with the less reductions in renal blood flow, creatinine clearance, Na+ -reabsorption, K+ and urea excretion, urine osmolality and free-water reabsorption. Importantly, the formation of intensive interstitial haemorrhagic congestion in the VIR group was not observed in the VIR-rRPP group. CONCLUSION: These results indicate that the transmission of high arterial pressure into renal microvessels during venous occlusion leads to rupturing of their walls and the formation of interstitial haemorrhagic congestion, which has an augmenting impact on ischaemia/reperfusion-induced renal structural damages and haemodynamic, excretory and urine-concentrating dysfunctions.


Assuntos
Injúria Renal Aguda , Hipertensão , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Pressão Arterial , Constrição , Ratos Sprague-Dawley , Rim , Injúria Renal Aguda/etiologia , Traumatismo por Reperfusão/complicações , Isquemia/complicações , Reperfusão/efeitos adversos , Microvasos
12.
Cell Commun Signal ; 22(1): 33, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217003

RESUMO

BACKGROUND: Spinal cord ischemia‒reperfusion injury (SCIRI) can lead to paraplegia, which leads to permanent motor function loss. It is a disastrous complication of surgery and causes tremendous socioeconomic burden. However, effective treatments for SCIRI are still lacking. PANoptosis consists of three kinds of programmed cell death, pyroptosis, apoptosis, and necroptosis, and may contribute to ischemia‒reperfusion-induced neuron death. Previous studies have demonstrated that hydrogen sulfide (H2S) exerts a neuroprotective effect in many neurodegenerative diseases. However, whether H2S is anti-PANoptosis and neuroprotective in the progression of acute SCIRI remains unclear. Thus, in this study we aimed to explore the role of H2S in SCIRI and its underlying mechanisms. METHODS: Measurements of lower limb function, neuronal activity, microglia/macrophage function histopathological examinations, and biochemical levels were performed to examine the efficacy of H2S and to further demonstrate the mechanism and treatment of SCIRI. RESULTS: The results showed that GYY4137 (a slow-releasing H2S donor) treatment attenuated the loss of Nissl bodies after SCIRI and improved the BBB score. Additionally, the number of TUNEL-positive and cleaved caspase-3-positive cells was decreased, and the upregulation of expression of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 expression were reversed after GYY4137 administration. Meanwhile, both the expression and activation of p-MLKL, p-RIP1, and p-RIP3, along with the number of PI-positive and RIP3-positive neurons, were decreased in GYY4137-treated rats. Furthermore, GYY4137 administration reduced the expression of NLRP3, cleaved caspase-1 and cleaved GSDMD, decreased the colocalization NeuN/NLRP3 and Iba1/interleukin-1ß-expressing cells, and inhibited proinflammatory factors and microglia/macrophage polarization. CONCLUSIONS: H2S ameliorated spinal cord neuron loss, prevented motor dysfunction after SCIRI, and exerted a neuroprotective effect via the inhibition of PANoptosis and overactivated microglia-mediated neuroinflammation in SCIRI.


Assuntos
Sulfeto de Hidrogênio , Morfolinas , Fármacos Neuroprotetores , Compostos Organotiofosforados , Traumatismo por Reperfusão , Ratos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 3/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/patologia , Apoptose , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
13.
Neurocrit Care ; 40(1): 99-115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37002474

RESUMO

BACKGROUND: Significant long-term neurologic disability occurs in survivors of pediatric cardiac arrest, primarily due to hypoxic-ischemic brain injury. Postresuscitation care focuses on preventing secondary injury and the pathophysiologic cascade that leads to neuronal cell death. These injury processes include reperfusion injury, perturbations in cerebral blood flow, disturbed oxygen metabolism, impaired autoregulation, cerebral edema, and hyperthermia. Postresuscitation care also focuses on early injury stratification to allow clinicians to identify patients who could benefit from neuroprotective interventions in clinical trials and enable targeted therapeutics. METHODS: In this review, we provide an overview of postcardiac arrest pathophysiology, explore the role of neuromonitoring in understanding postcardiac arrest cerebral physiology, and summarize the evidence supporting the use of neuromonitoring devices to guide pediatric postcardiac arrest care. We provide an in-depth review of the neuromonitoring modalities that measure cerebral perfusion, oxygenation, and function, as well as neuroimaging, serum biomarkers, and the implications of targeted temperature management. RESULTS: For each modality, we provide an in-depth review of its impact on treatment, its ability to stratify hypoxic-ischemic brain injury severity, and its role in neuroprognostication. CONCLUSION: Potential therapeutic targets and future directions are discussed, with the hope that multimodality monitoring can shift postarrest care from a one-size-fits-all model to an individualized model that uses cerebrovascular physiology to reduce secondary brain injury, increase accuracy of neuroprognostication, and improve outcomes.


Assuntos
Lesões Encefálicas , Parada Cardíaca , Hipóxia-Isquemia Encefálica , Traumatismo por Reperfusão , Humanos , Criança , Parada Cardíaca/complicações , Homeostase/fisiologia , Traumatismo por Reperfusão/complicações , Circulação Cerebrovascular/fisiologia
14.
J Heart Lung Transplant ; 43(2): 241-250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730188

RESUMO

BACKGROUND: Pulmonary endarterectomy (PEA) is the guideline-recommended treatment for patients with chronic thromboembolic pulmonary hypertension (CTEPH). However, some patients develop severe cardiopulmonary compromise before surgery, intraoperatively, or early postoperatively. This may result from advanced CTEPH, reperfusion pulmonary edema, massive endobronchial bleeding, or right ventricular (RV) failure secondary to residual pulmonary hypertension. Conventional cardiorespiratory support is ineffective when these complications are severe. Since 2005, we used extracorporeal membrane oxygenation (ECMO) as a rescue therapy for this group. We review our experience with ECMO support in these patients. METHODS: This study was a retrospective analysis of patients who received perioperative ECMO for PEA from a single national center from August 2005 to July 2022. Data were prospectively collected. RESULTS: One hundred and ten patients (4.7%) had extreme cardiorespiratory compromise requiring perioperative ECMO. Nine were established on ECMO before PEA. Of those who received ECMO postoperatively, 39 were for refractory reperfusion lung injury, 20 for RV failure, 31 for endobronchial bleeding, and the remaining 11 were for "other" reasons, such as cardiopulmonary resuscitation following late tamponade and aspiration pneumonitis. Sixty-two (56.4%) were successfully weaned from ECMO. Fifty-seven patients left the hospital alive, giving a salvage rate of 51.8%. Distal disease (Jamieson Type III) and significant residual pulmonary hypertension were also predictors of mortality on ECMO support. Overall, 5- and 10-year survival in patients who were discharged alive following ECMO support was 73.9% (SE: 6.1%) and 58.2% (SE: 9.5%), respectively. CONCLUSIONS: Perioperative ECMO support has an appropriate role as rescue therapy for this group. Over 50% survived to hospital discharge. These patients had satisfactory longer-term survival.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Hipertensão Pulmonar , Traumatismo por Reperfusão , Humanos , Oxigenação por Membrana Extracorpórea/efeitos adversos , Hipertensão Pulmonar/cirurgia , Hipertensão Pulmonar/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Hemorragia/etiologia , Insuficiência Cardíaca/terapia , Endarterectomia/efeitos adversos , Traumatismo por Reperfusão/complicações , Reino Unido/epidemiologia
15.
Can J Cardiol ; 40(1): 1-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906238

RESUMO

Myocardial infarction (MI) remains a leading cause of morbidity and mortality. In atherothrombotic MI (ST-elevation MI and type 1 non-ST-elevation MI), coronary artery occlusion leads to ischemia. Subsequent cardiomyocyte necrosis evolves over time as a wavefront within the territory at risk. The spectrum of ischemia and reperfusion injury is wide: it can be minimal in aborted MI or myocardial necrosis can be large and complicated by microvascular obstruction and reperfusion hemorrhage. Established risk scores and infarct classifications help with patient management but do not consider tissue injury characteristics. This document outlines the Canadian Cardiovascular Society classification of acute MI. It is an expert consensus formed on the basis of decades of data on atherothrombotic MI with reperfusion therapy. Four stages of progressively worsening myocardial tissue injury are identified: (1) aborted MI (no/minimal myocardial necrosis); (2) MI with significant cardiomyocyte necrosis, but without microvascular injury; (3) cardiomyocyte necrosis and microvascular dysfunction leading to microvascular obstruction (ie, "no-reflow"); and (4) cardiomyocyte and microvascular necrosis leading to reperfusion hemorrhage. Each stage reflects progression of tissue pathology of myocardial ischemia and reperfusion injury from the previous stage. Clinical studies have shown worse remodeling and increase in adverse clinical outcomes with progressive injury. Notably, microvascular injury is of particular importance, with the most severe form (hemorrhagic MI) leading to infarct expansion and risk of mechanical complications. This classification has the potential to stratify risk in MI patients and lay the groundwork for development of new, injury stage-specific and tissue pathology-based therapies for MI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão , Humanos , Canadá/epidemiologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Necrose/complicações , Traumatismo por Reperfusão/complicações , Hemorragia/etiologia
16.
Eur J Pharmacol ; 962: 176187, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37984729

RESUMO

BACKGROUND: Renal ischemia-reperfusion (I/R) is one of the main causes of acute kidney injury (AKI), for which there is currently no effective treatment. Recently, the interaction between endoplasmic reticulum (ER) stress and pyroptosis during AKI has been investigated. AIM: The purpose of this study was to investigate the protective effects of Gypenoside XVII (GP-17) against I/R-induced renal injury. METHODS: In this study, mice were divided into 6 groups, sham group, I/R group, GP-17 low-, medium-, high-dose group, and positive control 4-PBA group. The renal I/R was performed in mice by clamping the bilateral renal pedicles for 40 min, and then reperfusing for 24 h. Blood and kidney samples were collected for analysis. RESULTS: The results showed that GP-17 improved renal function and alleviated renal histopathological abnormalities caused by I/R. In addition, GP-17 pretreatment significantly decreased the expression or phosphorylation of ER stress response proteins including BIP, p-PERK, and CHOP. Besides, GP-17 inhibited the expression of pyroptosis proteins including caspase-1, GSDMD, and apoptotic protein BAX. The inflammatory factor IL-1ß in these GP-17 pretreatment groups was also significantly reduced. CONCLUSION: GP-17 blocked NLRP3 inflammasome activation by inhibiting ERS, thereby inhibiting renal tubular cell pyroptosis and apoptosis, and prevented renal I/R injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Piroptose , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Rim/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/complicações , Injúria Renal Aguda/patologia , Estresse do Retículo Endoplasmático
17.
J Invest Dermatol ; 144(1): 142-151.e5, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516309

RESUMO

Ischemia-reperfusion (I/R) injury is a key player in the pathogeneses of pressure ulcer formation. Our previous work demonstrated that inducing the transcription factor SOX2 promotes cutaneous wound healing through EGFR signaling pathway enhancement. However, its protective effect on cutaneous I/R injury was not well-characterized. We aimed to assess the role of SOX2 in cutaneous I/R injury and the tissue-protective effect of SOX2 induction in keratinocytes (KCs) in cutaneous I/R injury. SOX2 was transiently expressed in KCs after cutaneous I/R injury. Ulcer formation was significantly suppressed in KC-specific SOX2-overexpressing mice. SOX2 in skin KCs significantly suppressed the infiltrating inflammatory cells, apoptotic cells, vascular damage, and hypoxic areas in cutaneous I/R injury. Oxidative stress-induced mRNA levels of inflammatory cytokine expression were suppressed, and antioxidant stress factors and amphiregulin were elevated by SOX2 induction in skin KCs. Recombinant amphiregulin administration suppressed pressure ulcer development after cutaneous I/R injury in mice and suppressed oxidative stress-induced ROS production and apoptosis in vitro. These findings support that SOX2 in KCs might regulate cutaneous I/R injury through amphiregulin production, resulting in oxidative stress suppression. Recombinant amphiregulin can be a potential therapeutic agent for cutaneous I/R injury.


Assuntos
Lesão por Pressão , Traumatismo por Reperfusão , Animais , Camundongos , Anfirregulina/genética , Anfirregulina/metabolismo , Apoptose , Queratinócitos/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Pele/metabolismo
18.
Mol Neurobiol ; 61(3): 1417-1432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37721688

RESUMO

Reperfusion is an essential pathological stage in hypoxic ischemic encephalopathy (HIE). Although the Rice-Vannucci model is widely used in HIE research, it remains difficult to replicate HIE-related reperfusion brain injury. The purpose of this study is to establish a rat model of hypoxia ischemia reperfusion brain damage (HIRBD) using a common carotid artery (CCA) muscle bridge in order to investigate the mechanisms of cerebral resistance to hypoxic-ischemic and reperfusion brain damage. Random assignment of Sprague-Dawley (SD) rats to the Sham, HIRBD, and Rice-Vannucci groups. Changes in body weight, mortality rate, spontaneous alternation behavior test (SAB test), and dynamic changes in cerebral blood flow (CBF) were detected. The damaged cerebral cortices were extracted for morphological comparison, transcriptomic analysis, and quantitative real-time PCR. Harvesting the hippocampus for transmission electron microscopy (TEM) detection. As a result, CCA muscle bridge could effectively block CBF, which recovered after the muscle bridge detachment. Pathological comparison, the SAB test, and TEM analysis revealed that brain damage in Rice-Vannucci was more severe than HIRBD. Gpx1, S100a6, Cldn5, Esr1, and Gfap were highly expressed in both HIRBD and Rice-Vannucci. In conclusion, the CCA muscle bridge-established HIRBD model could be used as an innovative and dependable model to simulate pathological process of HIRBD.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/patologia , Ratos Sprague-Dawley , Encéfalo/patologia , Lesões Encefálicas/patologia , Hipóxia/patologia , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Animais Recém-Nascidos
19.
Mol Neurobiol ; 61(2): 1175-1186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37695472

RESUMO

Post-stroke acute inhibition of aquaporin 4 (AQP4) is known to exacerbate inflammation and apoptosis, yet the underlying mechanisms are not fully understood. The objective of this study was to investigate the specific mechanism of inflammation and apoptosis following cerebral ischemia-reperfusion (I/R) injury using the AQP4-specific inhibitor, N-(1,3,4-thiadiazol-2-yl) pyridine-3-carboxamide dihydrochloride (TGN-020). Ischemic stroke was induced in mice using the middle cerebral artery occlusion (MCAO) model. The C57/BL6 mice were randomly divided into three groups as follows: sham operation, I/R 48 h, and TGN-020 + I/R 48 h treatment. All mice were subjected to a series of procedures. These procedures encompassed 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological scoring, fluorescence tracing, western blotting, immunofluorescence staining, and RNA sequencing (RNA-seq). The glymphatic function in the cortex surrounding cerebral infarction was determined using tracer, glial fibrillary acid protein (GFAP), AQP4 co-staining, and beta-amyloid precursor protein (APP) staining; differential genes were detected using RNA-seq. The influence of TGN-020 on the extracellular signal-regulated kinase 1/2 (ERK) 1/2 pathway was confirmed using the ERK1/2 pathway agonists Ro 67-7467. Additionally, we examined the expression of inflammation associated with microglia and astrocytes after TGN-020 and Ro 67-7467 treatment. Compared with I/R group, TGN-020 alleviated glymphatic dysfunction by inhibiting astrocyte proliferation and reducing tracer accumulation in the peri-infarct area. RNA-seq showed that the differentially expressed genes were mainly involved in the activation of astrocytes and microglia and in the ERK1/2 pathway. Western blot and immunofluorescence further verified the expression of associated inflammation. The inflammation and cell apoptosis induced by I/R are mitigated by TGN-020. This mitigation occurs through the improvement of glymphatic function and the inhibition of the ERK1/2 pathway.


Assuntos
Isquemia Encefálica , Niacinamida/análogos & derivados , Traumatismo por Reperfusão , Tiadiazóis , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Transdução de Sinais/fisiologia , Apoptose , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
20.
Neuroreport ; 35(4): 216-224, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38141009

RESUMO

Cognitive dysfunction is one of the common complications of cerebral ischemia-reperfusion (CI/R) injury after ischemic stroke. Neuroinflammation and oxidative stress are the core pathological mechanism of CI/R injury. The activation of brain derived neurotrophic factor (BDNF)-tyrosine receptor kinase B (TrkB) signaling antagonize cognitive dysfunction in a series of neuropathy. Naringenin (NAR) improves cognitive function in many diseases, but the role of NAR in CI/R injury-induced cognitive dysfunction remains unexplored. The study aimed to explore the potential protective effects of NAR in CI/R injury-induced cognitive dysfunction and underlying mechanism. The rats were exposed to transient middle cerebral artery occlusion (MCAO) and then treated with distilled water or NAR (50 or 100 mg/kg/day, p.o.) for 30 days. The Y-maze test, Novel object recognition test and Morris water maze test were performed to assess cognitive function. The levels of oxidative stress and inflammatory cytokines were measured by ELISA. The expressions of BDNF/TrkB signaling were detected by Western blot. NAR prevented cognitive impairment in MCAO-induced CI/R injury rats. Moreover, NAR inhibited oxidative stress (reduced levels of malondialdehyde and 4-hydroxynonenal, increased activities of superoxide dismutase and Glutathione peroxidase) and inflammatory cytokines (reduced levels of tumor necrosis factor-α, Interleukin-1ß and Interleukin-6), up-regulated the expressions of BDNF and p-TrkB in hippocampus of MCAO-induced CI/R rats. NAR ameliorated cognitive dysfunction of CI/R rats via inhibiting oxidative stress, reducing inflammatory response, and up-regulating BDNF/TrkB signaling pathways in the hippocampus.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Flavanonas , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...